16 research outputs found

    Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus

    Get PDF
    We present a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-gg hyperelliptic curve defined over Fq\mathbb F_q with explicit real multiplication (RM) by an order Z[η]\Z[\eta] in a degree-gg totally real number field. It is based on the approaches by Schoof and Pila in a more favorable case where we can split the \ell-torsion into gg kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus, we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to model the \ell-torsion by structured polynomial systems. Applying this technique to the kernels, the systems we obtain are much smaller and so is the complexity of solving them. Our main result is that there exists a constant c>0c>0 such that, for any fixed gg, this algorithm has expected time and space complexity O((logq)c)O((\log q)^{c}) as qq grows and the characteristic is large enough. We prove that c9c\le 9 and we also conjecture that the result still holds for c=7c=7.Comment: To appear in Journal of Complexity. arXiv admin note: text overlap with arXiv:1710.0344

    Improved Complexity Bounds for Counting Points on Hyperelliptic Curves

    Get PDF
    We present a probabilistic Las Vegas algorithm for computing the local zeta function of a hyperelliptic curve of genus gg defined over Fq\mathbb{F}_q. It is based on the approaches by Schoof and Pila combined with a modeling of the \ell-torsion by structured polynomial systems. Our main result improves on previously known complexity bounds by showing that there exists a constant c>0c>0 such that, for any fixed gg, this algorithm has expected time and space complexity O((logq)cg)O((\log q)^{cg}) as qq grows and the characteristic is large enough.Comment: To appear in Foundations of Computational Mathematic

    Counting points on genus-3 hyperelliptic curves with explicit real multiplication

    Get PDF
    We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic curve defined over a finite field Fq\mathbb F_q, with explicit real multiplication by an order Z[η]\mathbb Z[\eta] in a totally real cubic field. Our main result states that this algorithm requires an expected number of O~((logq)6)\widetilde O((\log q)^6) bit-operations, where the constant in the O~()\widetilde O() depends on the ring Z[η]\mathbb Z[\eta] and on the degrees of polynomials representing the endomorphism η\eta. As a proof-of-concept, we compute the zeta function of a curve defined over a 64-bit prime field, with explicit real multiplication by Z[2cos(2π/7)]\mathbb Z[2\cos(2\pi/7)].Comment: Proceedings of the ANTS-XIII conference (Thirteenth Algorithmic Number Theory Symposium

    Counting points on genus-3 hyperelliptic curves with explicit real multiplication

    Get PDF
    International audienceWe propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic curve defined over a finite field FqFq, with explicit real multiplication by an order Z[η]Z[η] in a totally real cubic field. Our main result states that this algorithm requires an expected number of O((logq)6)O((log q) 6) bit-operations, where the constant in the O()O() depends on the ring Z[η]Z[η] and on the degrees of polynomials representing the endomorphism ηη. As a proof-of-concept, we compute the zeta function of a curve defined over a 64-bit prime field, with explicit real multiplication by Z[2cos(2π/7)Z[2 cos(2π/7)]

    Counting points on hyperelliptic curves in large characteristic : algorithms and complexity

    No full text
    Le comptage de points de courbes algébriques est une primitive essentielle en théorie des nombres, avec des applications en cryptographie, en géométrie arithmétique et pour les codes correcteurs. Dans cette thèse, nous nous intéressons plus particulièrement au cas de courbes hyperelliptiques définies sur des corps finis de grande caractéristique p. Dans ce cas de figure, les algorithmes dérivés de ceux de Schoof et Pila sont actuellement les plus adaptés car leur complexité est polynomiale en \log p. En revanche, la dépendance en le genre g de la courbe est exponentielle et se fait cruellement sentir même pour g=3. Nos contributions consistent principalement à obtenir de nouvelles bornes pour la dépendance en g de l'exposant de \log p. Dans le cas de courbes hyperelliptiques, de précédents travaux donnaient une borne quasi-quadratique que nous avons pu ramener à linéaire, et même constante dans le cas très particuliers de familles de courbes dites à multiplication réelle (RM). En genre 3, nous avons proposé un algorithme inspiré de ceux de Schoof et de Gaudry-Harley-Schost dont la complexité, en général prohibitive, devient très raisonnable dans le cas de courbes RM. Nous avons ainsi pu réaliser des expériences pratiques et compter les points d'une courbe hyperelliptique de genre 3 pour un p de 64 bitsCounting points on algebraic curves has drawn a lot of attention due to its many applications from number theory and arithmetic geometry to cryptography and coding theory. In this thesis, we focus on counting points on hyperelliptic curves over finite fields of large characteristic p. In this setting, the most suitable algorithms are currently those of Schoof and Pila, because their complexities are polynomial in \log q. However, their dependency in the genus g of the curve is exponential, and this is already painful even in genus 3. Our contributions mainly consist of establishing new complexity bounds with a smaller dependency in g of the exponent of \log p. For hyperelliptic curves, previous work showed that it was quasi-quadratic, and we reduced it to a linear dependency. Restricting to more special families of hyperelliptic curves with explicit real multiplication (RM), we obtained a constant bound for this exponent.In genus 3, we proposed an algorithm based on those of Schoof and Gaudry-Harley-Schost whose complexity is prohibitive in general, but turns out to be reasonable when the input curves have explicit RM. In this more favorable case, we were able to count points on a hyperelliptic curve defined over a 64-bit prime fiel

    Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus

    Get PDF
    International audienceWe present a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-g hyperelliptic curve defined over F q with explicit real multiplication (RM) by an order Z[η]Z[η] in a degree-g totally real number field. It is based on the approaches by Schoof and Pila in a more favorable case where we can split the-torsion into g kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus, we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to model the-torsion by structured polynomial systems. Applying this technique to the kernels, the systems we obtain are much smaller and so is the complexity of solving them. Our main result is that there exists a constant c>0c > 0 such that, for any fixed g, this algorithm has expected time and space complexity O((logq)c)O((log q) c) as q grows and the characteristic is large enough. We prove that c9c ≤ 9 and we also conjecture that the result still holds for c=7c = 7

    Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité

    No full text
    Counting points on algebraic curves has drawn a lot of attention due to its many applications from number theory and arithmetic geometry to cryptography and coding theory. In this thesis, we focus on counting points on hyperelliptic curves over finite fields of large characteristic pp. In this setting, the most suitable algorithms are currently those of Schoof and Pila, because their complexities are polynomial in logq\log q. However, their dependency in the genus gg of the curve is exponential, and this is already painful even in genus 3. Our contributions mainly consist of establishing new complexity bounds with a smaller dependency in gg of the exponent of logp\log p. For hyperelliptic curves, previous work showed that it was quasi-quadratic, and we reduced it to a linear dependency. Restricting to more special families of hyperelliptic curves with explicit real multiplication (RM), we obtained a constant bound for this exponent.In genus 3, we proposed an algorithm based on those of Schoof and Gaudry-Harley-Schost whose complexity is prohibitive in general, but turns out to be reasonable when the input curves have explicit RM. In this more favorable case, we were able to count points on a hyperelliptic curve defined over a 64-bit prime fieldLe comptage de points de courbes algébriques est une primitive essentielle en théorie des nombres, avec des applications en cryptographie, en géométrie arithmétique et pour les codes correcteurs. Dans cette thèse, nous nous intéressons plus particulièrement au cas de courbes hyperelliptiques définies sur des corps finis de grande caractéristique pp. Dans ce cas de figure, les algorithmes dérivés de ceux de Schoof et Pila sont actuellement les plus adaptés car leur complexité est polynomiale en logp\log p. En revanche, la dépendance en le genre gg de la courbe est exponentielle et se fait cruellement sentir même pour g=3g=3. Nos contributions consistent principalement à obtenir de nouvelles bornes pour la dépendance en gg de l'exposant de logp\log p. Dans le cas de courbes hyperelliptiques, de précédents travaux donnaient une borne quasi-quadratique que nous avons pu ramener à linéaire, et même constante dans le cas très particuliers de familles de courbes dites à multiplication réelle (RM). En genre 33, nous avons proposé un algorithme inspiré de ceux de Schoof et de Gaudry-Harley-Schost dont la complexité, en général prohibitive, devient très raisonnable dans le cas de courbes RM. Nous avons ainsi pu réaliser des expériences pratiques et compter les points d'une courbe hyperelliptique de genre 33 pour un pp de 64 bit

    Efficient computation of Riemann-Roch spaces for plane curves with ordinary singularities

    Get PDF
    We revisit the seminal Brill-Noether algorithm for plane curves with ordinary singularities. Our new approach takes advantage of fast algorithms for polynomials and structured matrices. We design a new probabilistic algorithm of type Las Vegas that computes a Riemann-Roch space in expected sub-quadratic time

    Computing Riemann-Roch spaces via Puiseux expansions

    No full text
    International audienceComputing large Riemann-Roch spaces for plane projective curves still constitutes a major algorithmic and practical challenge. Seminal applications concern the construction of arbitrarily large algebraic geometry error correcting codes over alphabets with bounded cardinality. Nowadays such codes are increasingly involved in new areas of computer science such as cryptographic protocols and "interactive oracle proofs". In this paper, we design a new probabilistic algorithm of Las Vegas type for computing Riemann-Roch spaces of smooth divisors, in characteristic zero, and with expected complexity exponent 2.373 (a feasible exponent for linear algebra) in terms of the input size

    Computing Riemann-Roch spaces via Puiseux expansions

    No full text
    International audienceComputing large Riemann-Roch spaces for plane projective curves still constitutes a major algorithmic and practical challenge. Seminal applications concern the construction of arbitrarily large algebraic geometry error correcting codes over alphabets with bounded cardinality. Nowadays such codes are increasingly involved in new areas of computer science such as cryptographic protocols and "interactive oracle proofs". In this paper, we design a new probabilistic algorithm of Las Vegas type for computing Riemann-Roch spaces of smooth divisors, in characteristic zero, and with expected complexity exponent 2.373 (a feasible exponent for linear algebra) in terms of the input size
    corecore